LiquidPiston, Inc.

Introducing the High Efficiency Hybrid Cycle Engine

Per Suneby psuneby@liquidpiston.com

LiquidPiston Vision

Internal Combustion Engines (ICEs), based on new highly-efficient, multi-fuel engine architectures, will be critical for the world's "Expensive Oil" economy for the foreseeable future, by enabling:

- Very efficient utilization (compared to current ICEs) of fossil fuels & bio-fuels, and a
- <u>Practical evolution</u> to alternative and lower-carbon energy sources

for transportation and power generation applications.

Why A New ICE? Entering the Era of "Green Mobility"

Climate Change

Unfriendly or Unstable Oil Supply Countries

End of Era of
Cheap Oil –
Supply & Political
Constraints

US Diesel & Gas Consumption = 180 B Gal (2006)

Current ICE
Platforms Originate
from 1860's

Legacy ICE Ave. Efficiency < 20%

\$275B Annual Mkt 60 M units, 5% G/R

Federal CAFE Stds

LPI's Innovation: High Efficiency Hybrid Cycle

Move Combustion cycle from Time Domain to Spatial Domain

Efficiency ≈ Area under the curve

Volume

HEHC Thermodynamic Advantages

vs. Diesel Cycle

vs. Otto Cycle

Efficiency ≈ Area within the curve

Initial Prototype Engine (10 HP)

LPI BENEFIT	Improvement Factor	Parameter
Efficiency Max	x 1.4	η _{max, conventional} ~42% η _{max, LPI} ~ 57%
Efficiency Ave. for variable load/ automotive application = Fuel Consumption	x 3	η _{avg, conventional} ~ 17% η _{avg, LPI} > 50%
Size/weight (<50 kW)	x 5-10	5 Lbs / HP (Otto) 10 Lbs / HP (Diesel) 1 Lbs / HP (LPI)
Size/weight (>50 kW)	x 3- 6	3 Lbs / HP (Otto) 6 Lbs / HP (Diesel) 1 Lbs / HP (LPI)
Noise Level	Lower (eliminate poppet valve & exhaust noise)	tbd

LPI Strategy

Provide high efficiency engine technology and design expertise via partners who will incorporate the HEHC engine in multiple automotive and non-automotive applications.

LPI will:

- Build a small world-class R&D team to continue innovation in core combustion engine technology and engine systems design
- Focus on OEMs and licensees as the primary go-to-market strategy
 - 1. Auxiliary Power Unit and Genset mfrs initial target
 - 2. Serial Hybrid EV range extender engine strategic target
- Utilize 3rd party manufacturers, with LPI manufacturing engineering
- Build asset value and intellectual property protection through continuing development of a comprehensive patent portfolio (1 patent granted, 4 pending, more in the pipeline.)

Multiple Potential Applications

Automotive

- Range Extender ICEs
- Primary Propulsion

GM Volt

Tata \$2500 Car (Nano)

√ Electric Generators

Truck APUs

Military/Civilian Gensets

Non-Auto Vehicles

Vectrix Electric Scooter

Honda Riding Mower

Military

Unmanned Aerial Vehicles

Exo-Skeleton Armor

Residential Co-Gen

Climate Energy FreeWatt

Company-Building Challenges

- Experienced staff w. engine experience
 - Not in CT
- Supporting infrastructure machine shops, outsourced mfrs, test houses, etc.
- Go-to-Market:
 - Long OEM design-in cycle
 - Engines = scale business
 - Startup suppliers perceived as risky
- Maintain capital efficiency
 - Goal: < \$25M all in</p>

Establish 2nd site in auto tech location

 Seek MI, Ohio, or Ontario gov't & local financing & assistance

- Pursue OEM strategy
- Gensets/APUs as initial commercial mkt
- Selective DoD applications
- Seek partner financing

Financials

Sources of revenue

- Engine product sales
- Manufacturing licenses/royalties
- NRE engineering design services for partners

Revenue Forecast

Initial pilots and OEM contracts in 2009

Team

Technology Development

- Nikolay Shkolnik,
 - PhD in Physics, Uconn
 - 20 patents
 - Founder of Quest Systems Inc, DARPA funded
 - Clean Energy Program Manager, GEN3 until 2007
- Alexander Shkolnik
 - PhD, MIT, expected May 2009 (Dynamics, Control)

Business Development

- Per Suneby
 - 25 years of experience with startup companies, a VC firm (Flagship Ventures), and F500 technology companies

Investors / Directors

- Bill Frezza, Adams Capital Management
- Andy Harrison, NorthWater Capital
- Advisory Board of Industry Experts

Summary

- Huge markets (transportation & power generation), in turmoil – ripe for disruption
 - Autos and other vehicles must be re-invented
 - Energy efficiency and multi-fuel capability essential
- LPI is pursuing an engine systems approach:
 - Based fundamental thermodynamics vetted by industry experts
 - Strong IP position; opportunity to continue to innovate
 - OEM go-to-market strategy: Discussions underway with multiple players
- LPI will enter the market in 2009:
 - Engine prototype 1Q; initial pilot design-in wins & revenue
 - Sign 1-2 initial major partnerships (Joint dev., NRE/equity investment, lab trial)
 - Close Series B to ramp operations